Regional / Local Data beyond Supply

By Hans Menge
Target of this presentation

How to provide regional or local data in case a National System of Statistics does not supply the variables requested for regional or local level "xyz"
Reasons for „no supply“

- YOUNG administration or young system of statistics, not yet so well developed
- OLD statistical framework, downgraded to reduce the burden on respondents, increased use of administrative data

My hypothesis:

- There is more IN the national systems of statistics (as possible source of regional information) than is usually pulled OUT
- Compared with the expenses for implementing and operating a new survey or for enlarging a sample survey, it is rather inexpensive to implement a system of calculation (even a comprehensive and sophisticated system) and execute all the data analysis needed
Methodological approaches to Regional Disaggregation (R.D.), specified by

3 Examples

1 Regional Accounts
All Regional Account variables are generated by R.D.

2 Urban Audit
97 of 333 variables for the German Urban Audit to be generated more or less by R.D.

3 Labour Force Survey in Turkey
Upgrade the Turkish Statistical System by generating regional data (NUTS-3) with the aid of R.D., using NUTS-2 data
REGIONAL DISAGGREGATION
in Regional Accounts

- **Top down:**
 Preset national benchmark figure
 - must be scored by the sum of all regional results

- **Bottom up:**
 The sum of the available (auxiliary) regional variable
 - should score the national benchmark figure!

- **Requested:**
 most appropriate (= best correlated) regional variable to suit the national variable (benchmark)

- **Problem of Adequacy**
 Example:
 “Gainfully Employed” as key variable to disaggregate some part of GDP? ...

- **Does that fit?**
 You have to face large regional differences of ...
 - full-time... / half-time... / marginal employment
 - contracted hours
 - qualification and monetary compensation
1) Variables of **same** dimension, e.g.:

national: A1 = „Gainfully Employed in total“

regional: A2 = „Registered Employees in total“

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>var. A₁</td>
<td>var. A₂</td>
</tr>
</tbody>
</table>

- **Sum of Regional Variable which differs from benchmark variable**

- **Regional Proportion**

- **Difference, to be distributed proportionally (accord. to Var. A₂) to all regional units**

Results

Regional figures

- Region 11
- Region 12
- Region 13
- (…)

Variables of same dimension, e.g.:

- national: A1 = „Gainfully Employed in total“
- regional: A2 = „Registered Employees in total“
2nd Example:
Urban Audit (German data)

- 333 variables required in total
- 97 of which had to be "estimated" for German U.A.
 because: lack of census data

No statistical source with results at regional level available for these variables

- Only "Estimation"?
 No! – because:
 Validity of results is comparable to those of Reg. Accounts

- How?
 • Use of upgraded system of calculation,
 • based on Regional Accounts methods, but
 • more sophisticated calculations (to fit special requirements)

- Special Problems ... (see next slide)
Special Problems

- **Non Totable Variables**, e.g.:

 "%", "sqm / household", "EUR/hh"

- **Complementary Variables**

 ("Sex", "modal split of commuters")

- **Nested Variables**, e.g.:

 "A", "B" and "total of A living in B"

- **Classified Variables**

 (by data supply)

 However, required: "Quinitil" etc...

- **Unsuitable Reference Time**

 Required: 2004,

- **Different Regional levels**

 (and code systems): NUTS-3 or

 \(\Sigma \) of NUTS-3 or **part** of NUTS-3

Special Solutions

- **Refining Methods**: 2 different paths acc. to types of numerator / denominator

- **Iterative Proportional Fitting (IPF)**

 to ensure consistent results

- **Special Trick**

 to ensure consistent results

- **Satellit Calculation Systems**

 for diverse extraction and conversion of the demanded variables

- **Different Techniques of Regional Disaggregation & Aggregation**

- **Projection** of basic Survey 2002

 by appropriate key variables on regional level
Are there **Alternatives**
to avoid Deduction of data by Regional Disaggregation?

Alternatives:

- Upgrade **Sample Size**?
- More Regional Detail from the Sample Survey itself?
- Effort to **Steady / Stabilize** annual data base? (to avoid mavericks in time series)

Answer:

- Not feasible because of high costs involved
- No valid results on lower level
 Even Supplied Regional data provide:
 a) plenty of blocked data
 b) some problematic results
- Apply Sample Survey of each year! … and **Smooth** time series by „EMA“ (Exponential Moving Average) = „Temporal Aggregation“
 Why EMA?
 Well known simple „moving average“ has a problem …
 – at the current edge and a problem of
 – unsteadiness through former periods
Why not enlarge the calculations?

To execute the system of calculations for

- **85** Core Cities and LCA on behalf of Urban Audit – or **for all ...**
- **439** regional units of level NUTS-3

means **only a slight increase** in effort & expense!

Thus:

- It would be reasonable to do it **for all regions**! – In order to
- generate **general improvement** of regional data base!

Total Effort to provide

| **85 Core Cities** | +30% effort means + 500% data! |
| **439 Regional Units** | |
3rd Example: Turkey:
Statistics to be upgraded (here: to be refined)

Task:

Problem:
- **Missing Key variables** at level NUTS-3 (which were up to date!), as needed for standard disaggregation methods.
- **Supplied only:**
 - Census 2000 [too old!],
 - Current population projection [no adequate key variable to disaggregate „Labour“]

What to do?
Way out:
Combined Methodical Approach

A „Structural Method“
Use strongly discriminating Structural Variables within LFS:
• Urban / Rural
• Male / Female

Adaptation & Projection of Census 2000 figures

1) Compare Census 2000 with old LFS 2000, then
 → Adapt Census figures

2) „Disaggregate“ Census 2000 [NUTS-2 to NUTS-3] by „Structural Method“ and
 Compare with real NUTS-3 results, then derive
 → factors for EACH regional unit
 (to adjust results of Method A)

C Use register data (for Employed)
as soon as their validity proves to be sufficient for this purpose.
Register is being installed in Turkey, but not yet completed.
(Problem: Different stage of completeness)

D Efforts to ensure valid data
• Use all helpful techniques (IPF, Exponent. Moving Average, etc.)
• Lots of data analysis at EACH step of the Calculation system
 → to ensure consistency
 → to distinguish between regional particularities and mavericks and
 → to identify simple mistakes within your calculation system

Means: Calculate on lower level than requested
Conclusions

- **Data IN >> Data OUT**

 There is more possible Information IN some national Survey Data than usually pulled OUT

- **How ? – by special Techniques**

 There are simple Methods & assistant Techniques to ensure valid Regional Data

 These have to be

 - adapted to the challenges of each specific data supply & request and
 - joined to a comprehensive & circumspect system of calculations & plausibility control

- **Chance to put into practice ?**

 Efforts to generate and apply these procedures are rather small, compared with the expenses for (enlarging) a survey
Thank you for your attention

... and thank you, Berthold, for the Presentation

... Thank you,
- **Klaus Trutzel** / Germany for supervising German Urban Audit methods and ...

- **Didem Sezer** / Turkey for initiating & attending further development of Methods

Hans Menge
53175 Bonn / Germany
email: hdmenge@yahoo.de
Tel. +49 228 317438